有關 Solvespace 機構模擬功能介紹, 與 Python3 及 Brython 程式驗證
Solvespace 平面四連桿機構模擬
Python3 平面四連桿機構模擬:
Ubuntu 安裝 matplotlib:
sudo apt-get install python3-matplotlib
import math import time # 利用 matplotlib 程式庫畫出 contour 輪廓 import matplotlib.pyplot as plt class Coord(object): def __init__(self,x,y): self.x = x self.y = y def __sub__(self,other): # This allows you to substract vectors return Coord(self.x-other.x,self.y-other.y) def __repr__(self): # Used to get human readable coordinates when printing return "Coord(%f,%f)"%(self.x,self.y) def length(self): # Returns the length of the vector return math.sqrt(self.x**2 + self.y**2) def angle(self): # Returns the vector's angle return math.atan2(self.y,self.x) def normalize(coord): return Coord( coord.x/coord.length(), coord.y/coord.length() ) def perpendicular(coord): # Shifts the angle by pi/2 and calculate the coordinates # using the original vector length return Coord( coord.length()*math.cos(coord.angle()+math.pi/2), coord.length()*math.sin(coord.angle()+math.pi/2) ) # 點類別 class Point(object): # 起始方法 def __init__(self, x, y): self.x = x self.y = y # 加入 Eq 方法 def Eq(self, pt): self.x = pt.x self.y = pt.y # 加入 setPoint 方法 def setPoint(self, px, py): self.x = px self.y = py # 加上 distance(pt) 方法, 計算點到 pt 的距離 def distance(self, pt): self.pt = pt x = self.x - self.pt.x y = self.y - self.pt.y return math.sqrt(x * x + y * y) # Line 類別物件 class Line(object): # 起始方法 def __init__(self, p1, p2): self.p1 = p1 self.p2 = p2 # 直線的第一點, 設為線尾 self.Tail = self.p1 # 直線組成的第二點, 設為線頭 self.Head = self.p2 # 直線的長度屬性 self.length = math.sqrt(math.pow(self.p2.x-self.p1.x, 2)+math.pow(self.p2.y-self.p1.y,2)) # setPP 以指定頭尾座標點來定義直線 def setPP(self, p1, p2): self.p1 = p1 self.p2 = p2 self.Tail = self.p1 self.Head = self.p2 self.length = math.sqrt(math.pow(self.p2.x-self.p1.x, 2)+math.pow(self.p2.y-self.p1.y,2)) # setRT 方法 for Line, 應該已經確定 Tail 點, 然後以 r, t 作為設定 Head 的參考 def setRT(self, r, t): self.r = r self.t = t x = self.r * math.cos(self.t) y = self.r * math.sin(self.t) self.Tail.Eq(self.p1) self.Head.setPoint(self.Tail.x + x,self.Tail.y + y) # getR 方法 for Line def getR(self): # x 分量與 y 分量 x = self.p1.x - self.p2.x y = self.p1.y - self.p2.y return math.sqrt(x * x + y * y) # 根據定義 atan2(y,x), 表示 (x,y) 與 正 x 軸之間的夾角, 介於 pi 與 -pi 間 def getT(self): x = self.p2.x - self.p1.x y = self.p2.y - self.p1.y if (math.fabs(x) < math.pow(10,-100)): if(y < 0.0): return (-math.pi/2) else: return (math.pi/2) else: return math.atan2(y, x) # setTail 方法 for Line def setTail(self, pt): self.pt = pt self.Tail.Eq(pt) self.Head.setPoint(self.pt.x + self.x, self.pt.y + self.y) # getHead 方法 for Line def getHead(self): return self.Head def getTail(self): return self.Tail class Link(Line): def __init__(self, p1, p2): self.p1 = p1 self.p2 = p2 self.length = math.sqrt(math.pow((self.p2.x - self.p1.x), 2) + math.pow((self.p2.y - self.p1.y), 2)) class Triangle(object): def __init__(self, p1, p2, p3): self.p1 = p1 self.p2 = p2 self.p3 = p3 def getLenp3(self): p1 = self.p1 ret = p1.distance(self.p2) return ret def getLenp1(self): p2 = self.p2 ret = p2.distance(self.p3) return ret def getLenp2(self): p1 = self.p1 ret = p1.distance(self.p3) return ret # 角度 def getAp1(self): ret = math.acos(((self.getLenp2() * self.getLenp2() + self.getLenp3() * self.getLenp3()) - self.getLenp1() * self.getLenp1()) / (2* self.getLenp2() * self.getLenp3())) return ret def getAp2(self): ret =math.acos(((self.getLenp1() * self.getLenp1() + self.getLenp3() * self.getLenp3()) - self.getLenp2() * self.getLenp2()) / (2* self.getLenp1() * self.getLenp3())) return ret def getAp3(self): ret = math.acos(((self.getLenp1() * self.getLenp1() + self.getLenp2() * self.getLenp2()) - self.getLenp3() * self.getLenp3()) / (2* self.getLenp1() * self.getLenp2())) return ret # ends Triangle def # 透過三個邊長定義三角形 def setSSS(self, lenp3, lenp1, lenp2): self.lenp3 = lenp3 self.lenp1 = lenp1 self.lenp2 = lenp2 self.ap1 = math.acos(((self.lenp2 * self.lenp2 + self.lenp3 * self.lenp3) - self.lenp1 * self.lenp1) / (2* self.lenp2 * self.lenp3)) self.ap2 = math.acos(((self.lenp1 * self.lenp1 + self.lenp3 * self.lenp3) - self.lenp2 * self.lenp2) / (2* self.lenp1 * self.lenp3)) self.ap3 = math.acos(((self.lenp1 * self.lenp1 + self.lenp2 * self.lenp2) - self.lenp3 * self.lenp3) / (2* self.lenp1 * self.lenp2)) # 透過兩個邊長與夾角定義三角形 def setSAS(self, lenp3, ap2, lenp1): self.lenp3 = lenp3 self.ap2 = ap2 self.lenp1 = lenp1 self.lenp2 = math.sqrt((self.lenp3 * self.lenp3 + self.lenp1 * self.lenp1) - 2* self.lenp3 * self.lenp1 * math.cos(self.ap2)) #等於 SSS(AB, BC, CA) def setSaSS(self, lenp2, lenp3, lenp1): self.lenp2 = lenp2 self.lenp3 = lenp3 self.lenp1 = lenp1 if(self.lenp1 > (self.lenp2 + self.lenp3)): #CAB 夾角為 180 度, 三點共線且 A 介於 BC 之間 ret = math.pi else : # CAB 夾角為 0, 三點共線且 A 不在 BC 之間 if((self.lenp1 < (self.lenp2 - self.lenp3)) or (self.lenp1 < (self.lenp3 - self.lenp2))): ret = 0.0 else : # 透過餘絃定理求出夾角 CAB ret = math.acos(((self.lenp2 * self.lenp2 + self.lenp3 * self.lenp3) - self.lenp1 * self.lenp1) / (2 * self.lenp2 * self.lenp3)) return ret # 取得三角形的三個邊長值 def getSSS(self): temp = [] temp.append( self.getLenp1() ) temp.append( self.getLenp2() ) temp.append( self.getLenp3() ) return temp # 取得三角形的三個角度值 def getAAA(self): temp = [] temp.append( self.getAp1() ) temp.append( self.getAp2() ) temp.append( self.getAp3() ) return temp # 取得三角形的三個角度與三個邊長 def getASASAS(self): temp = [] temp.append(self.getAp1()) temp.append(self.getLenp1()) temp.append(self.getAp2()) temp.append(self.getLenp2()) temp.append(self.getAp3()) temp.append(self.getLenp3()) return temp #2P 2L return mid P def setPPSS(self, p1, p3, lenp1, lenp3): temp = [] self.p1 = p1 self.p3 = p3 self.lenp1 = lenp1 self.lenp3 = lenp3 #bp3 is the angle beside p3 point, cp3 is the angle for line23, p2 is the output line31 = Line(p3, p1) self.lenp2 = line31.getR() #self.lenp2 = self.p3.distance(self.p1) #這裡是求角3 ap3 = math.acos(((self.lenp1 * self.lenp1 + self.lenp2 * self.lenp2) - self.lenp3 * self.lenp3) / (2 * self.lenp1 * self.lenp2)) #ap3 = math.acos(((self.lenp1 * self.lenp1 + self.lenp3 * self.lenp3) - self.lenp2 * self.lenp2) / (2 * self.lenp1 * self.lenp3)) bp3 = line31.getT() cp3 = bp3 - ap3 temp.append(p3.x + self.lenp1*math.cos(cp3))#p2.x temp.append(p3.y + self.lenp1*math.sin(cp3))#p2.y return temp # 以上為相關函式物件的定義區 # 全域變數 midpt = Point(0, 0) tippt = Point(0, 0) contour = [] # 幾何位置輸入變數 x=10 y=10 r=10 # 其他輸入變數 theta = 0 degree = math.pi/180.0 dx = 2 dy = 4 #set p1.p2.p3.p4 position p1 = Point(150,100) p2 = Point(150,200) p3 = Point(300,300) p4 = Point(350,100) #create links line1 = Link(p1,p2) line2 = Link(p2,p3) line3 = Link(p3,p4) line4 = Link(p1,p4) line5 = Link(p2,p4) link2_len = p2.distance(p3) link3_len = p3.distance(p4) triangle1 = Triangle(p1,p2,p4) triangle2 = Triangle(p2,p3,p4) def simulate(): global theta, midpt, oldpt theta += dx p2.x = p1.x + line1.length*math.cos(theta*degree) p2.y = p1.y - line1.length*math.sin(theta*degree) p3.x, p3.y = triangle2.setPPSS(p2,p4,link2_len,link3_len) # 計算垂直單位向量 a = Coord(p3.x, p3.y) b = Coord(p2.x, p2.y) normal = perpendicular(normalize(a-b)) midpt.x = (p2.x + p3.x)/2 midpt.y = (p2.y + p3.y)/2 tippt.x = midpt.x + 150*normal.x tippt.y = midpt.y + 150*normal.y # 印出座標點 #print(round(tippt.x, 2), round(tippt.y, 2)) if theta < 360: contour.append((round(tippt.x, 2), round(tippt.y, 2))) for i in range(180): simulate() # 印出 contour #print(contour) x_list = [x for (x, y) in contour] y_list = [y for (x, y) in contour] plt.xlabel('x coordinate') plt.ylabel('y coordinate') plt.plot(x_list, y_list) plt.show()
以下將上述四連桿模擬程式移到近端的 Jupyter 平台中執行:
以下將上述四連桿模擬程式移到 Jupyterhub 平台中執行:
以下再利用 Brython 繪出四連桿模擬特定點的掃掠圖:
以下利用 Brython 動態畫出四連桿機構模擬圖:
以下利用 Solvespace 繪圖法進行相同機構模擬驗證:
以下再利用 Solvespace 程式 API 方法進行四連桿模擬驗證:
以下以 Delta 3D 印表機印出連桿零件, 組立後以步進馬達驅動進行驗證:
以下利用伸縮連桿設計, 以 Delta 3D 印表機印出連桿零件, 組立後以步進馬達驅動進行驗證:
請以上述相同流程, 模擬並實作驗證 多連桿機構的作動.